skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Peterson, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work demonstrates a nanoparticle-enabled integration of air capture and conversion of CO2. Ambient CO2is captured in a KOH–ethylene glycol solution and then selectively reduced to formate under 50 °C and ambient pressure using Pd NPs. 
    more » « less
  2. Alizon, Samuel (Ed.)
    Global risk maps are an important tool for assessing the global threat of mosquito and tick-transmitted arboviral diseases. Public health officials increasingly rely on risk maps to understand the drivers of transmission, forecast spread, identify gaps in surveillance, estimate disease burden, and target and evaluate the impact of interventions. Here, we describe how current approaches to mapping arboviral diseases have become unnecessarily siloed, ignoring the strengths and weaknesses of different data types and methods. This places limits on data and model output comparability, uncertainty estimation and generalisation that limit the answers they can provide to some of the most pressing questions in arbovirus control. We argue for a new generation of risk mapping models that jointly infer risk from multiple data types. We outline how this can be achieved conceptually and show how this new framework creates opportunities to better integrate epidemiological understanding and uncertainty quantification. We advocate for more co-development of risk maps among modellers and end-users to better enable risk maps to inform public health decisions. Prospective validation of risk maps for specific applications can inform further targeted data collection and subsequent model refinement in an iterative manner. If the expanding use of arbovirus risk maps for control is to continue, methods must develop and adapt to changing questions, interventions and data availability. 
    more » « less
    Free, publicly-accessible full text available April 4, 2026
  3. null (Ed.)
  4. null (Ed.)
    Ticks rank high among arthropod vectors in terms of numbers of infectious agents that they transmit to humans, including Lyme disease, Rocky Mountain spotted fever, Colorado tick fever, human monocytic ehrlichiosis, tularemia, and human granulocytic anaplasmosis. Increasing temperature is suspected to affect tick biting rates and pathogen developmental rates, thereby potentially increasing risk for disease incidence. Tick distributions respond to climate change, but how their geographic ranges will shift in future decades and how those shifts may translate into changes in disease incidence remain unclear. In this study, we have assembled correlative ecological niche models for eight tick species of medical or veterinary importance in North America (Ixodes scapularis, I. pacificus, I. cookei, Dermacentor variabilis, D. andersoni, Amblyomma americanum, A. maculatum, and Rhipicephalus sanguineus), assessing the distributional potential of each under both present and future climatic conditions. Our goal was to assess whether and how species’ distributions will likely shift in coming decades in response to climate change. We interpret these patterns in terms of likely implications for tick-associated diseases in North America. 
    more » « less